
Welcome to radiant_mlhub’s documentation!
The Python client for the Radiant MLHub API.
Getting Started
This guide will walk you through the basic usage of the radiant_mlhub
library, including:
Installing & configuring the library
Discovering & fetching datasets
Discovering & fetching collections
Downloading assets
Installation
Install with pip
$ pip install radiant_mlhub
Install with conda
$ conda install -c conda-forge radiant-mlhub
Configuration
If you have not done so already, you will need to register for an MLHub API key here.
Once you have your API key, you will need to create a default profile by setting up a .mlhub/profiles
file in your
home directory. You can use the mlhub configure command line tool to do this:
$ mlhub configure
API Key: Enter your API key here...
Wrote profile to /Users/youruser/.mlhub/profiles
Hint
If you do not have write access to the home directory on your machine, you can change the location of the profiles
file using the MLHUB_HOME
environment variables. For instance, setting MLHUB_HOME=/tmp/some-directory/.mlhub
will cause the client to look for your profiles in a
/tmp/some-directory/.mlhub/profiles
file. You may want to permanently set this environment variable to ensure the client continues to look in
the correct place for your profiles.
List Datasets
Once you have your profile configured, you can get a list of the available datasets from the Radiant MLHub API using the
Dataset.list
method. This method is a generator that yields
Dataset
instances. You can use the id
and title
properties to get more information about a dataset.
>>> from radiant_mlhub import Dataset
>>> for dataset in Dataset.list():
... print(f'{dataset.id}: {dataset.title}')
'bigearthnet_v1: BigEarthNet V1'
Fetch a Dataset
You can also fetch a dataset by ID using the Dataset.fetch
method. This method returns a
Dataset
instance.
>>> dataset = Dataset.fetch('bigearthnet_v1')
>>> print(f'{dataset.id}: {dataset.title}')
'bigearthnet_v1: BigEarthNet V1'
Work with Dataset Collections
Datasets have 1 or more collections associated with them. Collections fall into 2 types:
source_imagery
: Collections of source imagery associated with the datasetlabels
: Collections of labeled data associated with the dataset (these collections implement the STAC Label Extension)
To list all the collections associated with a dataset use the collections
attribute.
>>> dataset.collections
[<Collection id=bigearthnet_v1_source>, <Collection id=bigearthnet_v1_labels>]
>>> type(dataset.collections[0])
<class 'radiant_mlhub.models.Collection'>
You can also list the collections by type using the collections.source_imagery
and collections.labels
properties
>>> from pprint import pprint
>>> len(dataset.collections.source_imagery)
1
>>> source_collection = dataset.collections.source_imagery[0]
>>> pprint(source_collection.to_dict())
{'description': 'BigEarthNet v1.0',
'extent': {'spatial': {'bbox': [[-9.00023345437725,
1.7542686833884724,
83.44558248555553,
68.02168200047284]]},
'temporal': {'interval': [['2017-06-13T10:10:31Z',
'2018-05-29T11:54:01Z']]}},
'id': 'bigearthnet_v1_source',
'keywords': [],
'license': 'CDLA-Permissive-1.0',
'links': [{'href': 'https://api.radiant.earth/mlhub/v1/collections/bigearthnet_v1_source',
'rel': 'self',
'type': 'application/json'},
{'href': 'https://api.radiant.earth/mlhub/v1',
'rel': 'root',
'type': 'application/json'}],
'properties': {},
'providers': [{'name': 'BigEarthNet',
'roles': ['processor', 'licensor'],
'url': 'https://api.radiant.earth/mlhub/v1/download/dummy-download-key'}],
'sci:citation': 'G. Sumbul, M. Charfuelan, B. Demir, V. Markl, "BigEarthNet: '
'A Large-Scale Benchmark Archive for Remote Sensing Image '
'Understanding", IEEE International Geoscience and Remote '
'Sensing Symposium, pp. 5901-5904, Yokohama, Japan, 2019.',
'stac_extensions': ['eo', 'sci'],
'stac_version': '1.0.0-beta.2',
'summaries': {},
'title': None}
Download a Collection Archive
You can download all the assets associated with a collection using the Collection.download
method. This method takes a path to a directory on the local file system where the archive should be saved.
If a file of the same name already exists, the client will check whether the downloaded file is complete by comparing its size against the
size of the remote file. If they are the same size, the download is skipped, otherwise the download will be resumed from the point where it
stopped. You can control this behavior using the if_exists
argument. Setting this to "skip"
will skip the download for existing
files without checking for completeness (a bit faster since it doesn’t require a network request), and setting this to "overwrite"
will overwrite any existing file.
>>> source_collection.download('~/Downloads')
28%|██▊ | 985.0/3496.9 [00:35<00:51, 48.31M/s]
Collection archives are gzipped tarballs. You can read more about the structure of these archives in this Medium post.
Authentication
The Radiant MLHub API uses API keys to authenticate users. These keys must be passed as a key
query parameter in any request made to the API.
Anyone can register for an API key by going to https://dashboard.mlhub.earth and creating an account.
Once you have logged into your account, go to http://dashboard.mlhub.earth/api-keys to create
API keys.
Using API Keys
The best way to add your API key to requests is to create a Session
instance using the
get_session()
helper function and making requests using this instance:
>>> from radiant_mlhub import get_session
>>> session = get_session()
>>> r = session.get(...)
You can associate an API key with a session in a number of ways:
programmatically via an instantiation argument
using environment variables
using a named profile
The Session
resolves an API key by trying each of the following (in this order):
Use an
api_key
argument provided during instantiation>>> session = get_session(api_key='myapikey')
Use an
MLHUB_API_KEY
environment variable>>> import os >>> os.environ['MLHUB_API_KEY'] = 'myapikey' >>> session = get_session()
Use a
profile
argument provided during instantiation (see Using Profiles section for details)>>> session = get_session(profile='my-profile')
Use an
MLHUB_PROFILE
environment variable (see Using Profiles section for details)>>> os.environ['MLHUB_PROFILE'] = 'my-profile' >>> session = get_session()
Use the
default
profile (see Using Profiles section for details)>>> session = get_session()
If none of the above strategies results in a valid API key, then an APIKeyNotFound
exception is raised.
The radiant_mlhub.session.Session
instance inherits from requests.Session
and adds a few conveniences to a typical
session:
Adds the API key as a
key
query parameterAdds an
Accept: application/json
headerAdds a
User-Agent
header that contains the package name and version, plus basic system information like the the OS namePrepends the MLHub root URL (
https://api.radiant.earth/mlhub/v1/
) to any request paths without a domainRaises a
radiant_mlhub.exceptions.AuthenticationError
for401 (UNAUTHORIZED)
responses
Using Profiles
Profiles in radiant_mlhub
are inspired by the Named Profiles
used by boto3
and awscli
. These named profiles provide a way to store API keys (and potentially other configuration) on your local system
so that you do not need to explicitly set environment variables or pass in arguments every time you create a session.
All profile configuration must be stored in a .mlhub/profiles
file in your home directory. The profiles
file uses the INI file
structure supported by Python’s configparser
module as described here.
Hint
If you do not have write access to the home directory on your machine, you can change the location of the profiles
file using the MLHUB_HOME
environment variables. For instance, setting MLHUB_HOME=/tmp/some-directory/.mlhub
will cause the client to look for your profiles in a
/tmp/some-directory/.mlhub/profiles
file. You may want to permanently set this environment variable to ensure the client continues to look in
the correct place for your profiles.
The easiest way to configure a profile is using the mlhub configure
CLI tool documented in the CLI Tools section:
$ mlhub configure
API Key: <Enter your API key when prompted>
Wrote profile to /Users/youruser/.mlhub/profiles
Given the following profiles
file…
[default]
api_key = default_api_key
[project1]
api_key = some_other_api_key
[project2]
api_key = yet_another_api_key
These would be the API keys used by sessions created using the various methods described in Using API Keys:
# As long as we haven't set the MLHUB_API_KEY or MLHUB_PROFILE environment variables
# this will pull from the default profile
>>> session = get_session()
>>> session.params['key']
'default_api_key'
# Setting the MLHUB_PROFILE environment variable overrides the default profile
>>> os.environ['MLHUB_PROFILE'] = 'project1'
>>> session = get_session()
>>> session.params['key']
'some_other_api_key'
# Passing the profile argument directly overrides the MLHUB_PROFILE environment variable
>>> session = get_session(profile='profile2')
>>> session.params['key']
'yet_another_api_key'
# Setting the MLHUB_API_KEY environment variable overrides any profile-related arguments
>>> os.environ['MLHUB_API_KEY'] = 'environment_direct'
>>> session = get_session()
>>> session.params['key']
'environment_direct'
# Passing the api_key argument overrides all other strategies or finding the key
>>> session = get_session(api_key='argument_direct')
>>> session.params['key']
'argument_direct'
Making API Requests
Once you have your profiles
file in place, you can create a session that will be used to make authenticated requests to the API:
>>> from radiant_mlhub import get_session
>>> session = get_session()
You can use this session to make authenticated calls to the API. For example, to list all collections:
>>> r = session.get('/collections') # Leading slash is optional
>>> collections = r.json()['collections']
>>> print(len(collections))
47
Relative v. Absolute URLs
Any URLs that do not include a scheme (http://
, https://
) are assumed to be relative to the Radiant MLHub root URL. For instance,
the following code would make a request to https://api.radiant.earth/mlhub/v1/some-endpoint
:
>>> session.get('some-endpoint')
but the following code would make a request to https://www.google.com
:
>>> session.get('https://www.google.com')
It is not recommended to make calls to APIs other than the Radiant MLHub API using these sessions.
Collections
A collection represents either a group of related labels or a group of related source imagery for a given time period and geographic
area. All collections in the Radiant MLHub API are valid STAC Collections.
For instance, the ref_landcovernet_v1_source
collection catalogs the source imagery associated with the LandCoverNet dataset, while
the ref_landcovernet_v1_labels
collection catalogs the land cover labels associated with this imagery. These collections are considered
part of a single ref_landcovernet_v1
dataset (see the Datasets documentation for details on working with datasets).
To discover and fetch collections you can either use the low-level client methods from radiant_mlhub.client
or the
Collection
class. Using the Collection
class is the recommended approach, but
both methods are described below.
Discovering Collections
The Radiant MLHub /collections
endpoint returns a list of objects describing the available collections. You can use the low-level
list_collections()
function to work with these responses as native Python data types (list
and dict
). This function returns a list of JSON-like dictionaries representing STAC Collections.
>>> from radiant_mlhub.client import list_collections
>>> from pprint import pprint
>>> collections = list_collections()
>>> first_collection = collections[0]
>>> pprint(first_collection)
{'description': 'African Crops Kenya',
'extent': {'spatial': {'bbox': [[34.18191992149459,
0.4724181558451209,
34.3714943155646,
0.7144217206851109]]},
'temporal': {'interval': [['2018-04-10T00:00:00Z',
'2020-03-13T00:00:00Z']]}},
'id': 'ref_african_crops_kenya_01_labels',
'keywords': [],
'license': 'CC-BY-SA-4.0',
'links': [{'href': 'https://api.radiant.earth/mlhub/v1/collections/ref_african_crops_kenya_01_labels',
'rel': 'self',
'title': None,
'type': 'application/json'},
{'href': 'https://api.radiant.earth/mlhub/v1',
'rel': 'root',
'title': None,
'type': 'application/json'}],
'properties': {},
'providers': [{'description': None,
'name': 'Radiant Earth Foundation',
'roles': ['licensor', 'host', 'processor'],
'url': 'https://radiant.earth'}],
'sci:citation': 'PlantVillage. (2019) PlantVillage Kenya Ground Reference '
'Crop Type Dataset, Version 1. [Indicate subset used]. '
'Radiant ML Hub. [Date Accessed]',
'sci:doi': '10.34911/rdnt.u41j87',
'stac_extensions': [],
'stac_version': '1.0.0-beta.2',
'summaries': {},
'title': None}
You can also discover collections using the Collection.list
method. This is the recommended way of
listing datasets. This method returns a list of Collection
instances.
>>> from radiant_mlhub import Collection
>>> collections = Collection.list()
>>> first_collection = collections[0]
>>> first_collection.ref_african_crops_kenya_01_labels
'ref_african_crops_kenya_01_labels'
>>> first_collection.description
'African Crops Kenya'
Fetching a Collection
The Radiant MLHub /collections/{p1}
endpoint returns an object representing a single collection. You can use the low-level
get_collection()
function to work with this response as a dict
.
>>> from radiant_mlhub.client import get_collection
>>> collection = get_collection('ref_african_crops_kenya_01_labels')
>>> pprint(collection)
{'description': 'African Crops Kenya',
'extent': {'spatial': {'bbox': [[34.18191992149459,
0.4724181558451209,
34.3714943155646,
0.7144217206851109]]},
'temporal': {'interval': [['2018-04-10T00:00:00Z',
'2020-03-13T00:00:00Z']]}},
'id': 'ref_african_crops_kenya_01_labels',
...
}
You can also fetch a collection from the Radiant MLHub API based on the collection ID using the Collection.fetch
method. This is the recommended way of fetching a collection. This method returns a Collection
instance.
>>> collection = Collection.fetch('ref_african_crops_kenya_01_labels')
>>> collection.id
'ref_african_crops_kenya_01_labels'
>>> collection.description
'African Crops Kenya'
For more information on a Collection, you can check out the MLHub Registry page:
>>> collection.registry_url
https://registry.mlhub.earth/10.14279/depositonce-10149/
Downloading a Collection
The Radiant MLHub /archive/{archive_id}
endpoint allows you to download an archive of all assets associated with a given collection. You
can use the low-level download_archive()
function to download the archive to your local file system.
>>> from radiant_mlhub.client import download_archive
>>> archive_path = download_archive('sn1_AOI_1_RIO')
28%|██▊ | 985.0/3496.9 [00:35<00:51, 48.31M/s]
>>> archive_path
PosixPath('/path/to/current/directory/sn1_AOI_1_RIO.tar.gz')
You can also download a collection archive using the Collection.download
method. This is the recommended way of downloading an archive.
>>> collection = Collection.fetch('sn1_AOI_1_RIO')
>>> archive_path = collection.download('~/Downloads', exist_okay=False) # Will raise exception if the file already exists
28%|██▊ | 985.0/3496.9 [00:35<00:51, 48.31M/s]
>>> archive_path
PosixPath('/Users/someuser/Downloads/sn1_AOI_1_RIO.tar.gz')
If a file of the same name already exists, these methods will check whether the downloaded file is complete by comparing its size against the size of the remote
file. If they are the same size, the download is skipped, otherwise the download will be resumed from the point where it stopped. You can control
this behavior using the if_exists
argument. Setting this to "skip"
will skip the download for existing files without checking for
completeness (a bit faster since it doesn’t require a network request), and setting this to "overwrite"
will overwrite any existing file.
To check the size of the download archive without actually downloading it, you can use the
Collection.total_archive_size
property.
>>> collection.archive_size
3504256089
Collection archives are gzipped tarballs. You can read more about the structure of these archives in this Medium post.
Datasets
A dataset represents a group of 1 or more related STAC Collections. They group together any source imagery Collections with the associated
label Collections to provide a convenient mechanism for accessing all of these data together. For instance, the bigearthnet_v1_source
Collection contains the source imagery for the BigEarthNet training dataset and, likewise, the
bigearthnet_v1_labels
Collection contains the annotations for that same dataset. These 2 collections are grouped together into the
bigearthnet_v1
dataset.
The Radiant MLHub Training Data Registry provides an overview of the datasets available through the Radiant MLHub API along with dataset metadata and a listing of the associated Collections.
To discover and fetch datasets you can either use the low-level client methods from radiant_mlhub.client
or the
Dataset
class. Using the Dataset
class is the recommended approach, but
both methods are described below.
Note
The objects returned by the Radiant MLHub API dataset endpoints are not STAC-compliant objects and therefore the Dataset
class described below is not a PySTAC object.
Discovering Datasets
The Radiant MLHub /datasets
endpoint returns a list of objects describing the available datasets and their associated collections. You
can use the low-level list_datasets()
function to work with these responses as native Python data types
(list
and dict
). This function is a generator that yields a dict
for each dataset.
>>> from radiant_mlhub.client import list_datasets
>>> from pprint import pprint
>>> datasets = list_datasets()
>>> first_dataset = datasets[0]
>>> pprint(first_dataset)
{'collections': [{'id': 'bigearthnet_v1_source', 'types': ['source_imagery']},
{'id': 'bigearthnet_v1_labels', 'types': ['labels']}],
'id': 'bigearthnet_v1',
'title': 'BigEarthNet V1'}
You can also discover datasets using the Dataset.list
method. This is the recommended way of
listing datasets. This method returns a list of Dataset
instances.
>>> from radiant_mlhub import Dataset
>>> datasets = Dataset.list()
>>> first_dataset = datasets[0]
>>> first_dataset.id
'bigearthnet_v1'
>>> first_dataset.title
'BigEarthNet V1'
Each of these functions/methods also accepts tags
and text
arguments that can be used to filter
datasets by their tags or a free text search, respectively. The tags
argument may be either a
single string or a list of strings. Only datasets that contain all of provided tags will be returned
and these tags must be an exact match. The text argument may, similarly, be either a string or a
list of strings. These will be used to search all of the text-based metadata fields for a dataset
(e.g. description, title, citation, etc.). Each argument is treated as a phrase by the text search
engine and only datasets with matches for all of the provided phrases will be returned. So, for
instance, text=["land", "cover"]
will return all datasets with either "land"
or "cover"
somewhere in their text metadata, while text="land cover"
will return all datasets with the
phrase "land cover"
in their text metadata.
Fetching a Dataset
The Radiant MLHub /datasets/{dataset_id}
endpoint returns an object representing a single dataset. You can use the low-level
get_dataset()
function to work with this response as a dict
.
>>> from radiant_mlhub.client import get_dataset_by_id
>>> dataset = get_dataset_by_id('bigearthnet_v1')
>>> pprint(dataset)
{'collections': [{'id': 'bigearthnet_v1_source', 'types': ['source_imagery']},
{'id': 'bigearthnet_v1_labels', 'types': ['labels']}],
'id': 'bigearthnet_v1',
'title': 'BigEarthNet V1'}
You can also fetch a dataset from the Radiant MLHub API based on the dataset ID using the Dataset.fetch
method. This is the recommended way of fetching a dataset. This method returns a Dataset
instance.
>>> dataset = Dataset.fetch_by_id('bigearthnet_v1')
>>> dataset.id
'bigearthnet_v1'
If you would rather fetch the dataset using its DOI you can do so as well:
>>> from radiant_mlhub.client import get_dataset_by_doi
>>> # Using the client...
>>> dataset = get_dataset_by_doi("10.6084/m9.figshare.12047478.v2")
>>> # Using the model classes...
>>> dataset = Dataset.fetch_by_doi
You can also use the more general get_dataset()
and Dataset.fetch
methods to get a dataset using either method:
>>> from radiant_mlhub.client import get_dataset
>>> # These will all return the same dataset
>>> dataset = get_dataset("ref_african_crops_kenya_02")
>>> dataset = get_dataset("10.6084/m9.figshare.12047478.v2")
>>> dataset = Dataset.fetch("ref_african_crops_kenya_02")
>>> dataset = Dataset.fetch("10.6084/m9.figshare.12047478.v2")
Dataset Collections
If you are using the Dataset
class, you can list the Collections associated with the dataset using the
Dataset.collections
property. This method returns a modified list
that has
2 additional attributes: source_imagery
and labels
. You can use these attributes to list only the collections of a the associated type.
All elements of these lists are instances of Collection
. See the Collections documentation for
details on how to work with these instances.
>>> len(first_dataset.collections)
2
>>> len(first_dataset.collections.source_imagery)
1
>>> first_dataset.collections.source_imagery[0].id
'bigearthnet_v1_source'
>>> len(first_dataset.collections.labels)
1
>>> first_dataset.collections.labels[0].id
'bigearthnet_v1_labels'
Warning
There are rare cases of collections that contain both source_imagery
and labels
items (e.g. the SpaceNet collections). In these cases, the
collection will be listed in both the dataset.collections.labels
and dataset.collections.source_imagery
lists, but will only appear once
in the main ``dataset.collections`` list. This may cause what appears to be a mismatch in list lengths:
>>> len(dataset.collections.source_imagery) + len(dataset.collections.labels) == len(dataset.collections)
False
Note
Both the low-level client functions and the class methods also accept keyword arguments that are passed directly to
get_session()
to create a session. See the Authentication documentation for details on how to
use these arguments or configure the client to read your API key automatically.
Downloading a Dataset
The Radiant MLHub /archive/{archive_id}
endpoint allows you to download an archive of all assets associated with a given collection.
The Dataset.download
method provides a convenient way of using this endpoint to download
the archives for all collections associated with a given dataset. This method downloads the archives for all associated collections
into the given output directory and returns a list of the paths to these archives.
If a file of the same name already exists for any of the archives, this method will check whether the downloaded file is complete by
comparing its size against the size of the remote file. If they are the same size, the download is skipped, otherwise the download
will be resumed from the point where it stopped. You can control this behavior using the if_exists
argument. Setting this to
"skip"
will skip the download for existing files without checking for completeness (a bit faster since it doesn’t require a
network request), and setting this to "overwrite"
will overwrite any existing file.
>>> dataset = Collection.fetch('bigearthnet_v1')
>>> archive_paths = dataset.download('~/Downloads')
>>> len(archive_paths)
2
To check the total size of the download archives for all collections in the dataset without actually
downloading it, you can use the Dataset.total_archive_size
property.
>>> dataset.total_archive_size
71311240007
Collection archives are gzipped tarballs. You can read more about the structure of these archives in this Medium post.
ML Models
A Model represents a STAC Item implementing the ML Model extension. The goal of the ML Model Extension is to provide a way of cataloging machine learning (ML) models that operate on Earth observation (EO) data described as a STAC catalog.
To discover and fetch models you can either use the low-level client methods from radiant_mlhub.client
or the
MLModel
class. Using the MLModel
class is the recommended
approach, but both methods are described below.
Discovering Models
The Radiant MLHub /models
endpoint returns a list of objects describing the available models and their properties. You
can use the low-level list_models()
function to work with these responses as native Python data types
(list
and dict
).
>>> from radiant_mlhub.client import list_models
>>> models = list_models()
>>> first_model = models[0]
>>> first_model.keys()
dict_keys(['id', 'bbox', 'type', 'links', 'assets', 'geometry', 'collection', 'properties', 'stac_version', 'stac_extensions'])
>>> first_model['id']
'model-cyclone-wind-estimation-torchgeo-v1'
>>> first_model['properties'].keys()
dict_keys(['title', 'license', 'sci:doi', 'datetime', 'providers', 'description', 'end_datetime', 'sci:citation', 'ml-model:type', 'start_datetime', 'sci:publications', 'ml-model:architecture', 'ml-model:prediction_type', 'ml-model:learning_approach'])
You can also discover models using the MLModel.list
method. This is the recommended way of
listing models. This method returns a list of MLModel
instances.
>>> from radiant_mlhub import MLModel
>>> from pprint import pprint
>>> models = MLModel.list()
>>> first_model = models[0]
>>> first_model.id
'model-cyclone-wind-estimation-torchgeo-v1'
>>> pprint(first_model.assets)
{'inferencing-checkpoint': <Asset href=https://zenodo.org/record/5773331/files/last.ckpt?download=1>,
'inferencing-compose': <Asset href=https://raw.githubusercontent.com/RadiantMLHub/cyclone-model-torchgeo/main/inferencing.yml>}
>>> len(first_model.links)
7
>>> # print only the ml-model and mlhub related links
>>> pprint([ link for link in first_model.links if 'ml-model:' in link.rel or 'mlhub:' in link.rel])
[<Link rel=ml-model:inferencing-image target=docker://docker.io/radiantearth/cyclone-model-torchgeo:1>,
<Link rel=ml-model:train-data target=https://api.radiant.earth/mlhub/v1/collections/nasa_tropical_storm_competition_train_source>,
<Link rel=mlhub:training-dataset target=https://mlhub.earth/data/nasa_tropical_storm_competition>]
>>> # you can access rest of properties as a dict
>>> first_model.properties.keys()
dict_keys(['title', 'license', 'sci:doi', 'datetime', 'providers', 'description', 'end_datetime', 'sci:citation', 'ml-model:type', 'start_datetime', 'sci:publications', 'ml-model:architecture', 'ml-model:prediction_type', 'ml-model:learning_approach'])
Fetching a Model
The Radiant MLHub /models/{model_id}
endpoint returns an object representing a single model. You can use the low-level
get_model_by_id()
function to work with this response as a dict
.
>>> from radiant_mlhub.client import get_model_by_id
>>> model = get_model_by_id('model-cyclone-wind-estimation-torchgeo-v1')
>>> model.keys()
dict_keys(['id', 'bbox', 'type', 'links', 'assets', 'geometry', 'collection', 'properties', 'stac_version', 'stac_extensions'])
You can also fetch a model from the Radiant MLHub API based on the model ID using the MLModel.fetch
method. This is the recommended way of fetching a model. This method returns a MLModel
instance.
>>> from radiant_mlhub import MLModel
>>> model = MLModel.fetch('model-cyclone-wind-estimation-torchgeo-v1')
>>> model.id
'model-cyclone-wind-estimation-torchgeo-v1'
>>> len(model.assets)
2
>>> len(model.links)
7
See the Discovering Models section above for more Python example code.
radiant_mlhub package
Subpackages
radiant_mlhub.client package
Submodules
radiant_mlhub.client.collections module
- radiant_mlhub.client.collections.get_collection(collection_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dict[str, Any] [source]
Returns a JSON-like dictionary representing the response from the Radiant MLHub
GET /collections/{p1}
endpoint.See the MLHub API docs for details.
- Parameters
- Returns
collection
- Return type
- Raises
EntityDoesNotExist – If a 404 response code is returned by the API
MLHubException – If any other response code is returned
- radiant_mlhub.client.collections.get_collection_item(collection_id: str, item_id: str, api_key: Optional[str] = None, profile: Optional[str] = None) Dict[str, Any] [source]
Returns a JSON-like dictionary representing the response from the Radiant MLHub
GET /collections/{p1}/items/{p2}
endpoint.- Parameters
collection_id (str) – The ID of the Collection to which the Item belongs.
item_id (str) – The ID of the Item.
api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Returns
item
- Return type
- radiant_mlhub.client.collections.list_collection_items(collection_id: str, *, page_size: Optional[int] = None, extensions: Optional[List[str]] = None, limit: int = 10, api_key: Optional[str] = None, profile: Optional[str] = None) Iterator[Dict[str, Any]] [source]
Yields JSON-like dictionaries representing STAC Item objects returned by the Radiant MLHub
GET /collections/{collection_id}/items
endpoint.Note
Because some collections may contain hundreds of thousands of items, this function limits the total number of responses to
10
by default. You can change this value by increasing the value of thelimit
keyword argument, or setting it toNone
to list all items. Be aware that trying to list all items in a large collection may take a very long time.- Parameters
collection_id (str) – The ID of the collection from which to fetch items
page_size (int) – The number of items to return in each page. If set to
None
, then this parameter will not be passed to the API and the default API value will be used (currently30
).extensions (list) – If provided, then only items that support all of the extensions listed will be returned.
limit (int) – The maximum total number of items to yield. Defaults to
10
.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Yields
item (dict) – JSON-like dictionary representing a STAC Item associated with the given collection.
- radiant_mlhub.client.collections.list_collections(*, api_key: Optional[str] = None, profile: Optional[str] = None) List[Dict[str, Any]] [source]
Gets a list of JSON-like dictionaries representing STAC Collection objects returned by the Radiant MLHub
GET /collections
endpoint.See the MLHub API docs for details.
- Parameters
- Returns
collections – List of JSON-like dictionaries representing STAC Collection objects.
- Return type
List[dict]
radiant_mlhub.client.datasets module
- radiant_mlhub.client.datasets.download_archive(archive_id: str, output_dir: Optional[Union[str, pathlib.Path]] = None, *, if_exists: str = 'resume', api_key: Optional[str] = None, profile: Optional[str] = None) pathlib.Path [source]
Downloads the archive with the given ID to an output location (current working directory by default).
The
if_exists
argument determines how to handle an existing archive file in the output directory. The default behavior (defined byif_exists="resume"
) is to resume the download by requesting a byte range starting at the size of the existing file. If the existing file is the same size as the file to be downloaded (as determined by theContent-Length
header), then the download is skipped. You can automatically skip download usingif_exists="skip"
(this may be faster if you know the download was not interrupted, since no network request is made to get the archive size). You can also overwrite the existing file usingif_exists="overwrite"
.- Parameters
archive_id (str) – The ID of the archive to download. This is the same as the Collection ID.
output_dir (Path) – Path to which the archive will be downloaded. Defaults to the current working directory.
if_exists (str, optional) – How to handle an existing archive at the same location. If
"skip"
, the download will be skipped. If"overwrite"
, the existing file will be overwritten and the entire file will be re-downloaded. If"resume"
(the default), the existing file size will be compared to the size of the download (using theContent-Length
header). If the existing file is smaller, then only the remaining portion will be downloaded. Otherwise, the download will be skipped.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Returns
output_path – The full path to the downloaded archive file.
- Return type
Path
- Raises
ValueError – If
if_exists
is not one of"skip"
,"overwrite"
, or"resume"
.
- radiant_mlhub.client.datasets.get_archive_info(archive_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dict[str, Any] [source]
Gets info for the given archive from the
/archive/{archive_id}/info
endpoint as a JSON-like dictionary.The JSON object returned by the API has the following properties:
collection
: The ID of the Collection that this archive is associated with.dataset
: The ID of the dataset that this archive’s Collection belongs to.size
: The size of the archive (in bytes)types
: The types associated with this archive’s Collection. Will be one of"source_imagery"
or"label"
.
- Parameters
- Returns
archive_info – JSON-like dictionary representing the API response.
- Return type
- radiant_mlhub.client.datasets.get_dataset(dataset_id_or_doi: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dict[str, Any] [source]
Returns a JSON-like dictionary representing a dataset by first trying to look up the dataset by ID, then falling back to finding the dataset by DOI.
See the MLHub API docs for details.
- radiant_mlhub.client.datasets.get_dataset_by_doi(dataset_doi: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dict[str, Any] [source]
Returns a JSON-like dictionary representing the response from the Radiant MLHub
GET /datasets/doi/{dataset_id}
endpoint.See the MLHub API docs for details.
- radiant_mlhub.client.datasets.get_dataset_by_id(dataset_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dict[str, Any] [source]
Returns a JSON-like dictionary representing the response from the Radiant MLHub
GET /datasets/{dataset_id}
endpoint.See the MLHub API docs for details.
- radiant_mlhub.client.datasets.list_datasets(*, tags: Optional[Union[str, Iterable[str]]] = None, text: Optional[Union[str, Iterable[str]]] = None, api_key: Optional[str] = None, profile: Optional[str] = None) List[Dict[str, Any]] [source]
Gets a list of JSON-like dictionaries representing dataset objects returned by the Radiant MLHub
GET /datasets
endpoint.See the MLHub API docs for details.
- Parameters
tags (A tag or list of tags to filter datasets by. If not
None
, only datasets) – containing all provided tags will be returned.text (A text phrase or list of text phrases to filter datasets by. If not
None
,) – only datasets containing all phrases will be returned.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Returns
datasets
- Return type
List[dict]
radiant_mlhub.client.ml_models module
- radiant_mlhub.client.ml_models.get_model_by_id(model_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dict[str, Any] [source]
Returns a JSON-like dictionary representing the response from the Radiant MLHub
GET /models/{model_id}
endpoint.See the MLHub API docs for details.
Module contents
Low-level functions for making requests to MLHub API endpoints.
- radiant_mlhub.client.download_archive(archive_id: str, output_dir: Optional[Union[str, pathlib.Path]] = None, *, if_exists: str = 'resume', api_key: Optional[str] = None, profile: Optional[str] = None) pathlib.Path [source]
Downloads the archive with the given ID to an output location (current working directory by default).
The
if_exists
argument determines how to handle an existing archive file in the output directory. The default behavior (defined byif_exists="resume"
) is to resume the download by requesting a byte range starting at the size of the existing file. If the existing file is the same size as the file to be downloaded (as determined by theContent-Length
header), then the download is skipped. You can automatically skip download usingif_exists="skip"
(this may be faster if you know the download was not interrupted, since no network request is made to get the archive size). You can also overwrite the existing file usingif_exists="overwrite"
.- Parameters
archive_id (str) – The ID of the archive to download. This is the same as the Collection ID.
output_dir (Path) – Path to which the archive will be downloaded. Defaults to the current working directory.
if_exists (str, optional) – How to handle an existing archive at the same location. If
"skip"
, the download will be skipped. If"overwrite"
, the existing file will be overwritten and the entire file will be re-downloaded. If"resume"
(the default), the existing file size will be compared to the size of the download (using theContent-Length
header). If the existing file is smaller, then only the remaining portion will be downloaded. Otherwise, the download will be skipped.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Returns
output_path – The full path to the downloaded archive file.
- Return type
Path
- Raises
ValueError – If
if_exists
is not one of"skip"
,"overwrite"
, or"resume"
.
- radiant_mlhub.client.get_archive_info(archive_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dict[str, Any] [source]
Gets info for the given archive from the
/archive/{archive_id}/info
endpoint as a JSON-like dictionary.The JSON object returned by the API has the following properties:
collection
: The ID of the Collection that this archive is associated with.dataset
: The ID of the dataset that this archive’s Collection belongs to.size
: The size of the archive (in bytes)types
: The types associated with this archive’s Collection. Will be one of"source_imagery"
or"label"
.
- Parameters
- Returns
archive_info – JSON-like dictionary representing the API response.
- Return type
- radiant_mlhub.client.get_collection(collection_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dict[str, Any] [source]
Returns a JSON-like dictionary representing the response from the Radiant MLHub
GET /collections/{p1}
endpoint.See the MLHub API docs for details.
- Parameters
- Returns
collection
- Return type
- Raises
EntityDoesNotExist – If a 404 response code is returned by the API
MLHubException – If any other response code is returned
- radiant_mlhub.client.get_collection_item(collection_id: str, item_id: str, api_key: Optional[str] = None, profile: Optional[str] = None) Dict[str, Any] [source]
Returns a JSON-like dictionary representing the response from the Radiant MLHub
GET /collections/{p1}/items/{p2}
endpoint.- Parameters
collection_id (str) – The ID of the Collection to which the Item belongs.
item_id (str) – The ID of the Item.
api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Returns
item
- Return type
- radiant_mlhub.client.get_dataset(dataset_id_or_doi: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dict[str, Any] [source]
Returns a JSON-like dictionary representing a dataset by first trying to look up the dataset by ID, then falling back to finding the dataset by DOI.
See the MLHub API docs for details.
- radiant_mlhub.client.get_dataset_by_doi(dataset_doi: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dict[str, Any] [source]
Returns a JSON-like dictionary representing the response from the Radiant MLHub
GET /datasets/doi/{dataset_id}
endpoint.See the MLHub API docs for details.
- radiant_mlhub.client.get_dataset_by_id(dataset_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dict[str, Any] [source]
Returns a JSON-like dictionary representing the response from the Radiant MLHub
GET /datasets/{dataset_id}
endpoint.See the MLHub API docs for details.
- radiant_mlhub.client.get_model_by_id(model_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dict[str, Any] [source]
Returns a JSON-like dictionary representing the response from the Radiant MLHub
GET /models/{model_id}
endpoint.See the MLHub API docs for details.
- radiant_mlhub.client.list_collection_items(collection_id: str, *, page_size: Optional[int] = None, extensions: Optional[List[str]] = None, limit: int = 10, api_key: Optional[str] = None, profile: Optional[str] = None) Iterator[Dict[str, Any]] [source]
Yields JSON-like dictionaries representing STAC Item objects returned by the Radiant MLHub
GET /collections/{collection_id}/items
endpoint.Note
Because some collections may contain hundreds of thousands of items, this function limits the total number of responses to
10
by default. You can change this value by increasing the value of thelimit
keyword argument, or setting it toNone
to list all items. Be aware that trying to list all items in a large collection may take a very long time.- Parameters
collection_id (str) – The ID of the collection from which to fetch items
page_size (int) – The number of items to return in each page. If set to
None
, then this parameter will not be passed to the API and the default API value will be used (currently30
).extensions (list) – If provided, then only items that support all of the extensions listed will be returned.
limit (int) – The maximum total number of items to yield. Defaults to
10
.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Yields
item (dict) – JSON-like dictionary representing a STAC Item associated with the given collection.
- radiant_mlhub.client.list_collections(*, api_key: Optional[str] = None, profile: Optional[str] = None) List[Dict[str, Any]] [source]
Gets a list of JSON-like dictionaries representing STAC Collection objects returned by the Radiant MLHub
GET /collections
endpoint.See the MLHub API docs for details.
- Parameters
- Returns
collections – List of JSON-like dictionaries representing STAC Collection objects.
- Return type
List[dict]
- radiant_mlhub.client.list_datasets(*, tags: Optional[Union[str, Iterable[str]]] = None, text: Optional[Union[str, Iterable[str]]] = None, api_key: Optional[str] = None, profile: Optional[str] = None) List[Dict[str, Any]] [source]
Gets a list of JSON-like dictionaries representing dataset objects returned by the Radiant MLHub
GET /datasets
endpoint.See the MLHub API docs for details.
- Parameters
tags (A tag or list of tags to filter datasets by. If not
None
, only datasets) – containing all provided tags will be returned.text (A text phrase or list of text phrases to filter datasets by. If not
None
,) – only datasets containing all phrases will be returned.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Returns
datasets
- Return type
List[dict]
radiant_mlhub.models package
Submodules
radiant_mlhub.models.collection module
Extensions of the PySTAC classes that provide convenience methods for interacting with the Radiant MLHub API.
- class radiant_mlhub.models.collection.Collection(id: str, description: str, extent: pystac.collection.Extent, title: Optional[str] = None, stac_extensions: Optional[List[str]] = None, href: Optional[str] = None, extra_fields: Optional[Dict[str, Any]] = None, catalog_type: Optional[pystac.catalog.CatalogType] = None, license: str = 'proprietary', keywords: Optional[List[str]] = None, providers: Optional[List[pystac.provider.Provider]] = None, summaries: Optional[pystac.summaries.Summaries] = None, *, api_key: Optional[str] = None, profile: Optional[str] = None)[source]
Bases:
pystac.collection.Collection
Class inheriting from
pystac.Collection
that adds some convenience methods for listing and fetching from the Radiant MLHub API.- property archive_size: Optional[int]
The size of the tarball archive for this collection in bytes (or
None
if the archive does not exist).
- download(output_dir: Union[str, pathlib.Path], *, if_exists: str = 'resume', api_key: Optional[str] = None, profile: Optional[str] = None) pathlib.Path [source]
Downloads the archive for this collection to an output location (current working directory by default). If the parent directories for
output_path
do not exist, they will be created.The
if_exists
argument determines how to handle an existing archive file in the output directory. See the documentation for thedownload_archive()
function for details. The default behavior is to resume downloading if the existing file is incomplete and skip the download if it is complete.Note
Some collections may be very large and take a significant amount of time to download, depending on your connection speed.
- Parameters
output_dir (Path) – Path to a local directory to which the file will be downloaded. File name will be generated automatically based on the download URL.
if_exists (str, optional) – How to handle an existing archive at the same location. If
"skip"
, the download will be skipped. If"overwrite"
, the existing file will be overwritten and the entire file will be re-downloaded. If"resume"
(the default), the existing file size will be compared to the size of the download (using theContent-Length
header). If the existing file is smaller, then only the remaining portion will be downloaded. Otherwise, the download will be skipped.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Returns
output_path – The path to the downloaded archive file.
- Return type
- Raises
FileExistsError – If file at
output_path
already exists and bothexist_okay
andoverwrite
areFalse
.
- classmethod fetch(collection_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Collection [source]
Creates a
Collection
instance by fetching the collection with the given ID from the Radiant MLHub API.- Parameters
- Returns
collection
- Return type
- fetch_item(item_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) pystac.item.Item [source]
- classmethod from_dict(d: Dict[str, Any], href: Optional[str] = None, root: Optional[pystac.catalog.Catalog] = None, migrate: bool = False, preserve_dict: bool = True, *, api_key: Optional[str] = None, profile: Optional[str] = None) Collection [source]
Patches the
pystac.Collection.from_dict()
method so that it returns the calling class instead of always returning apystac.Collection
instance.
- get_items(*, api_key: Optional[str] = None, profile: Optional[str] = None) Iterator[pystac.item.Item] [source]
Note
The
get_items
method is not implemented for Radiant MLHubCollection
instances for performance reasons. Please use theCollection.download()
method to download Collection assets.- Raises
- classmethod list(*, api_key: Optional[str] = None, profile: Optional[str] = None) List[Collection] [source]
Returns a list of
Collection
instances for all collections hosted by MLHub.See the Authentication documentation for details on how authentication is handled for this request.
- Parameters
- Returns
collections
- Return type
List[Collection]
radiant_mlhub.models.dataset module
Extensions of the PySTAC classes that provide convenience methods for interacting with the Radiant MLHub API.
- class radiant_mlhub.models.dataset.CollectionType(value)[source]
Bases:
enum.Enum
Valid values for the type of a collection associated with a Radiant MLHub dataset.
- LABELS = 'labels'
- SOURCE = 'source_imagery'
- class radiant_mlhub.models.dataset.Dataset(id: str, collections: List[Dict[str, Any]], title: Optional[str] = None, registry: Optional[str] = None, doi: Optional[str] = None, citation: Optional[str] = None, *, api_key: Optional[str] = None, profile: Optional[str] = None, **_: Any)[source]
Bases:
object
Class that brings together multiple Radiant MLHub “collections” that are all considered part of a single “dataset”. For instance, the
bigearthnet_v1
dataset is composed of both a source imagery collection (bigearthnet_v1_source
) and a labels collection (bigearthnet_v1_labels
).- registry_url
The URL to the registry page for this dataset, or
None
if no registry page exists.- Type
str or None
- doi
The DOI identifier for this dataset, or
None
if there is no DOI for this dataset.- Type
str or None
- citation
The citation information for this dataset, or
None
if there is no citation information.- Type
str or None
- property collections: radiant_mlhub.models.dataset._CollectionList
List of collections associated with this dataset. The list that is returned has 2 additional attributes (
source_imagery
andlabels
) that represent the list of collections corresponding the each type.Note
This is a cached property, so updating
self.collection_descriptions
after callingself.collections
the first time will have no effect on the results. Seefunctools.cached_property()
for details on clearing the cached value.Examples
>>> from radiant_mlhub import Dataset >>> dataset = Dataset.fetch('bigearthnet_v1') >>> len(dataset.collections) 2 >>> len(dataset.collections.source_imagery) 1 >>> len(dataset.collections.labels) 1
To loop through all collections
>>> for collection in dataset.collections: ... # Do something here
To loop through only the source imagery collections:
>>> for collection in dataset.collections.source_imagery: ... # Do something here
To loop through only the label collections:
>>> for collection in dataset.collections.labels: ... # Do something here
- download(output_dir: Union[pathlib.Path, str], *, if_exists: str = 'resume', api_key: Optional[str] = None, profile: Optional[str] = None) List[pathlib.Path] [source]
Downloads archives for all collections associated with this dataset to given directory. Each archive will be named using the collection ID (e.g. some_collection.tar.gz). If
output_dir
does not exist, it will be created.Note
Some collections may be very large and take a significant amount of time to download, depending on your connection speed.
- Parameters
output_dir (str or pathlib.Path) – The directory into which the archives will be written.
if_exists (str, optional) – How to handle an existing archive at the same location. If
"skip"
, the download will be skipped. If"overwrite"
, the existing file will be overwritten and the entire file will be re-downloaded. If"resume"
(the default), the existing file size will be compared to the size of the download (using theContent-Length
header). If the existing file is smaller, then only the remaining portion will be downloaded. Otherwise, the download will be skipped.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Returns
output_paths – List of paths to the downloaded archives
- Return type
List[pathlib.Path]
- Raises
IOError – If
output_dir
exists and is not a directory.FileExistsError – If one of the archive files already exists in the
output_dir
and bothexist_okay
andoverwrite
areFalse
.
- classmethod fetch(dataset_id_or_doi: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dataset [source]
Creates a
Dataset
instance by first trying to fetching the dataset based on ID, then falling back to fetching by DOI.- Parameters
- Returns
dataset
- Return type
- classmethod fetch_by_doi(dataset_doi: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dataset [source]
Creates a
Dataset
instance by fetching the dataset with the given DOI from the Radiant MLHub API.- Parameters
- Returns
dataset
- Return type
- classmethod fetch_by_id(dataset_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dataset [source]
Creates a
Dataset
instance by fetching the dataset with the given ID from the Radiant MLHub API.- Parameters
- Returns
dataset
- Return type
- classmethod list(*, tags: Optional[Union[str, Iterable[str]]] = None, text: Optional[Union[str, Iterable[str]]] = None, api_key: Optional[str] = None, profile: Optional[str] = None) List[Dataset] [source]
Returns a list of
Dataset
instances for each datasets hosted by MLHub.See the Authentication documentation for details on how authentication is handled for this request.
- Parameters
tags (A list of tags to filter datasets by. If not
None
, only datasets containing all) – provided tags will be returned.text (A list of text phrases to filter datasets by. If not
None
, only datasets) – containing all phrases will be returned.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Yields
dataset (Dataset)
radiant_mlhub.models.ml_model module
Extensions of the PySTAC classes that provide convenience methods for interacting with the Radiant MLHub API.
- class radiant_mlhub.models.ml_model.MLModel(id: str, geometry: Optional[Dict[str, Any]], bbox: Optional[List[float]], datetime: Optional[datetime.datetime], properties: Dict[str, Any], stac_extensions: Optional[List[str]] = None, href: Optional[str] = None, collection: Optional[Union[str, pystac.collection.Collection]] = None, extra_fields: Optional[Dict[str, Any]] = None, *, api_key: Optional[str] = None, profile: Optional[str] = None)[source]
Bases:
pystac.item.Item
- bbox: Optional[List[float]]
Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array is 2*n where n is the number of dimensions. Could also be None in the case of a null geometry.
- collection: Optional[Collection]
Collection
to which this Item belongs, if any.
- datetime: Optional[Datetime]
Datetime associated with this item. If
None
, thenstart_datetime
andend_datetime
incommon_metadata
will supply the datetime range of the Item.
- classmethod fetch(model_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) radiant_mlhub.models.ml_model.MLModel [source]
Fetches a
MLModel
instance by id.- Parameters
- Returns
model
- Return type
- classmethod from_dict(d: Dict[str, Any], href: Optional[str] = None, root: Optional[pystac.catalog.Catalog] = None, migrate: bool = False, preserve_dict: bool = True, *, api_key: Optional[str] = None, profile: Optional[str] = None) radiant_mlhub.models.ml_model.MLModel [source]
Patches the
pystac.Item.from_dict()
method so that it returns the calling class instead of always returning apystac.Item
instance.
- geometry: Optional[Dict[str, Any]]
Defines the full footprint of the asset represented by this item, formatted according to RFC 7946, section 3.1 (GeoJSON).
- classmethod list(*, api_key: Optional[str] = None, profile: Optional[str] = None) List[radiant_mlhub.models.ml_model.MLModel] [source]
Returns a list of
MLModel
instances for all models hosted by MLHub.See the Authentication documentation for details on how authentication is handled for this request.
- session_kwargs: Dict[str, Any] = {}
Class inheriting from
pystac.Item
that adds some convenience methods for listing and fetching from the Radiant MLHub API.
Module contents
Extensions of the PySTAC classes that provide convenience methods for interacting with the Radiant MLHub API.
- class radiant_mlhub.models.Collection(id: str, description: str, extent: pystac.collection.Extent, title: Optional[str] = None, stac_extensions: Optional[List[str]] = None, href: Optional[str] = None, extra_fields: Optional[Dict[str, Any]] = None, catalog_type: Optional[pystac.catalog.CatalogType] = None, license: str = 'proprietary', keywords: Optional[List[str]] = None, providers: Optional[List[pystac.provider.Provider]] = None, summaries: Optional[pystac.summaries.Summaries] = None, *, api_key: Optional[str] = None, profile: Optional[str] = None)[source]
Bases:
pystac.collection.Collection
Class inheriting from
pystac.Collection
that adds some convenience methods for listing and fetching from the Radiant MLHub API.- property archive_size: Optional[int]
The size of the tarball archive for this collection in bytes (or
None
if the archive does not exist).
- download(output_dir: Union[str, pathlib.Path], *, if_exists: str = 'resume', api_key: Optional[str] = None, profile: Optional[str] = None) pathlib.Path [source]
Downloads the archive for this collection to an output location (current working directory by default). If the parent directories for
output_path
do not exist, they will be created.The
if_exists
argument determines how to handle an existing archive file in the output directory. See the documentation for thedownload_archive()
function for details. The default behavior is to resume downloading if the existing file is incomplete and skip the download if it is complete.Note
Some collections may be very large and take a significant amount of time to download, depending on your connection speed.
- Parameters
output_dir (Path) – Path to a local directory to which the file will be downloaded. File name will be generated automatically based on the download URL.
if_exists (str, optional) – How to handle an existing archive at the same location. If
"skip"
, the download will be skipped. If"overwrite"
, the existing file will be overwritten and the entire file will be re-downloaded. If"resume"
(the default), the existing file size will be compared to the size of the download (using theContent-Length
header). If the existing file is smaller, then only the remaining portion will be downloaded. Otherwise, the download will be skipped.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Returns
output_path – The path to the downloaded archive file.
- Return type
- Raises
FileExistsError – If file at
output_path
already exists and bothexist_okay
andoverwrite
areFalse
.
- classmethod fetch(collection_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Collection [source]
Creates a
Collection
instance by fetching the collection with the given ID from the Radiant MLHub API.- Parameters
- Returns
collection
- Return type
- fetch_item(item_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) pystac.item.Item [source]
- classmethod from_dict(d: Dict[str, Any], href: Optional[str] = None, root: Optional[pystac.catalog.Catalog] = None, migrate: bool = False, preserve_dict: bool = True, *, api_key: Optional[str] = None, profile: Optional[str] = None) Collection [source]
Patches the
pystac.Collection.from_dict()
method so that it returns the calling class instead of always returning apystac.Collection
instance.
- get_items(*, api_key: Optional[str] = None, profile: Optional[str] = None) Iterator[pystac.item.Item] [source]
Note
The
get_items
method is not implemented for Radiant MLHubCollection
instances for performance reasons. Please use theCollection.download()
method to download Collection assets.- Raises
- classmethod list(*, api_key: Optional[str] = None, profile: Optional[str] = None) List[Collection] [source]
Returns a list of
Collection
instances for all collections hosted by MLHub.See the Authentication documentation for details on how authentication is handled for this request.
- Parameters
- Returns
collections
- Return type
List[Collection]
- class radiant_mlhub.models.Dataset(id: str, collections: List[Dict[str, Any]], title: Optional[str] = None, registry: Optional[str] = None, doi: Optional[str] = None, citation: Optional[str] = None, *, api_key: Optional[str] = None, profile: Optional[str] = None, **_: Any)[source]
Bases:
object
Class that brings together multiple Radiant MLHub “collections” that are all considered part of a single “dataset”. For instance, the
bigearthnet_v1
dataset is composed of both a source imagery collection (bigearthnet_v1_source
) and a labels collection (bigearthnet_v1_labels
).- registry_url
The URL to the registry page for this dataset, or
None
if no registry page exists.- Type
str or None
- doi
The DOI identifier for this dataset, or
None
if there is no DOI for this dataset.- Type
str or None
- citation
The citation information for this dataset, or
None
if there is no citation information.- Type
str or None
- property collections: radiant_mlhub.models.dataset._CollectionList
List of collections associated with this dataset. The list that is returned has 2 additional attributes (
source_imagery
andlabels
) that represent the list of collections corresponding the each type.Note
This is a cached property, so updating
self.collection_descriptions
after callingself.collections
the first time will have no effect on the results. Seefunctools.cached_property()
for details on clearing the cached value.Examples
>>> from radiant_mlhub import Dataset >>> dataset = Dataset.fetch('bigearthnet_v1') >>> len(dataset.collections) 2 >>> len(dataset.collections.source_imagery) 1 >>> len(dataset.collections.labels) 1
To loop through all collections
>>> for collection in dataset.collections: ... # Do something here
To loop through only the source imagery collections:
>>> for collection in dataset.collections.source_imagery: ... # Do something here
To loop through only the label collections:
>>> for collection in dataset.collections.labels: ... # Do something here
- download(output_dir: Union[pathlib.Path, str], *, if_exists: str = 'resume', api_key: Optional[str] = None, profile: Optional[str] = None) List[pathlib.Path] [source]
Downloads archives for all collections associated with this dataset to given directory. Each archive will be named using the collection ID (e.g. some_collection.tar.gz). If
output_dir
does not exist, it will be created.Note
Some collections may be very large and take a significant amount of time to download, depending on your connection speed.
- Parameters
output_dir (str or pathlib.Path) – The directory into which the archives will be written.
if_exists (str, optional) – How to handle an existing archive at the same location. If
"skip"
, the download will be skipped. If"overwrite"
, the existing file will be overwritten and the entire file will be re-downloaded. If"resume"
(the default), the existing file size will be compared to the size of the download (using theContent-Length
header). If the existing file is smaller, then only the remaining portion will be downloaded. Otherwise, the download will be skipped.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Returns
output_paths – List of paths to the downloaded archives
- Return type
List[pathlib.Path]
- Raises
IOError – If
output_dir
exists and is not a directory.FileExistsError – If one of the archive files already exists in the
output_dir
and bothexist_okay
andoverwrite
areFalse
.
- classmethod fetch(dataset_id_or_doi: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dataset [source]
Creates a
Dataset
instance by first trying to fetching the dataset based on ID, then falling back to fetching by DOI.- Parameters
- Returns
dataset
- Return type
- classmethod fetch_by_doi(dataset_doi: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dataset [source]
Creates a
Dataset
instance by fetching the dataset with the given DOI from the Radiant MLHub API.- Parameters
- Returns
dataset
- Return type
- classmethod fetch_by_id(dataset_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dataset [source]
Creates a
Dataset
instance by fetching the dataset with the given ID from the Radiant MLHub API.- Parameters
- Returns
dataset
- Return type
- classmethod list(*, tags: Optional[Union[str, Iterable[str]]] = None, text: Optional[Union[str, Iterable[str]]] = None, api_key: Optional[str] = None, profile: Optional[str] = None) List[Dataset] [source]
Returns a list of
Dataset
instances for each datasets hosted by MLHub.See the Authentication documentation for details on how authentication is handled for this request.
- Parameters
tags (A list of tags to filter datasets by. If not
None
, only datasets containing all) – provided tags will be returned.text (A list of text phrases to filter datasets by. If not
None
, only datasets) – containing all phrases will be returned.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Yields
dataset (Dataset)
- class radiant_mlhub.models.MLModel(id: str, geometry: Optional[Dict[str, Any]], bbox: Optional[List[float]], datetime: Optional[datetime.datetime], properties: Dict[str, Any], stac_extensions: Optional[List[str]] = None, href: Optional[str] = None, collection: Optional[Union[str, pystac.collection.Collection]] = None, extra_fields: Optional[Dict[str, Any]] = None, *, api_key: Optional[str] = None, profile: Optional[str] = None)[source]
Bases:
pystac.item.Item
- bbox: Optional[List[float]]
Bounding Box of the asset represented by this item using either 2D or 3D geometries. The length of the array is 2*n where n is the number of dimensions. Could also be None in the case of a null geometry.
- collection: Optional[Collection]
Collection
to which this Item belongs, if any.
- datetime: Optional[Datetime]
Datetime associated with this item. If
None
, thenstart_datetime
andend_datetime
incommon_metadata
will supply the datetime range of the Item.
- classmethod fetch(model_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) radiant_mlhub.models.ml_model.MLModel [source]
Fetches a
MLModel
instance by id.- Parameters
- Returns
model
- Return type
- classmethod from_dict(d: Dict[str, Any], href: Optional[str] = None, root: Optional[pystac.catalog.Catalog] = None, migrate: bool = False, preserve_dict: bool = True, *, api_key: Optional[str] = None, profile: Optional[str] = None) radiant_mlhub.models.ml_model.MLModel [source]
Patches the
pystac.Item.from_dict()
method so that it returns the calling class instead of always returning apystac.Item
instance.
- geometry: Optional[Dict[str, Any]]
Defines the full footprint of the asset represented by this item, formatted according to RFC 7946, section 3.1 (GeoJSON).
- classmethod list(*, api_key: Optional[str] = None, profile: Optional[str] = None) List[radiant_mlhub.models.ml_model.MLModel] [source]
Returns a list of
MLModel
instances for all models hosted by MLHub.See the Authentication documentation for details on how authentication is handled for this request.
- session_kwargs: Dict[str, Any] = {}
Class inheriting from
pystac.Item
that adds some convenience methods for listing and fetching from the Radiant MLHub API.
Submodules
radiant_mlhub.exceptions module
- exception radiant_mlhub.exceptions.APIKeyNotFound[source]
Bases:
radiant_mlhub.exceptions.MLHubException
Raised when an API key cannot be found using any of the strategies described in the Authentication docs.
- exception radiant_mlhub.exceptions.AuthenticationError[source]
Bases:
radiant_mlhub.exceptions.MLHubException
Raised when the Radiant MLHub API cannot authenticate the request, either because the API key is invalid or expired, or because no API key was provided in the request.
- exception radiant_mlhub.exceptions.EntityDoesNotExist[source]
Bases:
radiant_mlhub.exceptions.MLHubException
Raised when attempting to fetch a collection that does not exist in the Radiant MLHub API.
radiant_mlhub.session module
Methods and classes to simplify constructing and authenticating requests to the MLHub API.
It is generally recommended that you use the get_session()
function to create sessions, since this will propertly handle resolution
of the API key from function arguments, environment variables, and profiles as described in Authentication. See the
get_session()
docs for usage examples.
- class radiant_mlhub.session.Session(*, api_key: Optional[str])[source]
Bases:
requests.sessions.Session
Custom class inheriting from
requests.Session
with some additional conveniences:Adds the API key as a
key
query parameterAdds an
Accept: application/json
headerAdds a
User-Agent
header that contains the package name and version, plus basic system information like the OS namePrepends the MLHub root URL (
https://api.radiant.earth/mlhub/v1/
) to any request paths without a domainRaises a
radiant_mlhub.exceptions.AuthenticationError
for401 (UNAUTHORIZED)
responsesCalls
requests.Response.raise_for_status()
after all requests to raise exceptions for any status codes above 400.
- API_KEY_ENV_VARIABLE = 'MLHUB_API_KEY'
- DEFAULT_ROOT_URL = 'https://api.radiant.earth/mlhub/v1/'
- MLHUB_HOME_ENV_VARIABLE = 'MLHUB_HOME'
- PROFILE_ENV_VARIABLE = 'MLHUB_PROFILE'
- ROOT_URL_ENV_VARIABLE = 'MLHUB_ROOT_URL'
- classmethod from_config(profile: Optional[str] = None) radiant_mlhub.session.Session [source]
Create a session object by reading an API key from the given profile in the
profiles
file. By default, the client will look for theprofiles
file in a.mlhub
directory in the user’s home directory (as determined byPath.home
). However, if anMLHUB_HOME
environment variable is present, the client will look in that directory instead.- Parameters
profile (str, optional) – The name of a profile configured in the
profiles
file.- Returns
session
- Return type
- Raises
APIKeyNotFound – If the given config file does not exist, the given profile cannot be found, or there is no
api_key
property in the given profile section.
- classmethod from_env() radiant_mlhub.session.Session [source]
Create a session object from an API key from the environment variable.
- Returns
session
- Return type
- Raises
APIKeyNotFound – If the API key cannot be found in the environment
- paginate(url: str, **kwargs: Any) Iterator[Dict[str, Any]] [source]
Makes a GET request to the given
url
and paginates through all results by looking for a link in each response with arel
type of"next"
. Any additional keyword arguments are passed directly torequests.Session.get()
.- Parameters
url (str) – The URL to which the initial request will be made. Note that this may either be a full URL or a path relative to the
ROOT_URL
as described inSession.request()
.- Yields
page (dict) – An individual response as a dictionary.
- request(method: str, url: str, **kwargs: Any) requests.models.Response [source]
Overwrites the default
requests.Session.request()
method to prepend the MLHub root URL if the givenurl
does not include a scheme. This will raise anAuthenticationError
if a 401 response is returned by the server, and aHTTPError
if any other status code of 400 or above is returned.- Parameters
method (str) – The request method to use. Passed directly to the
method
argument ofrequests.Session.request()
url (str) – Either a full URL or a path relative to the
ROOT_URL
. For example, to make a request to the Radiant MLHub API/collections
endpoint, you could usesession.get('collections')
.**kwargs – All other keyword arguments are passed directly to
requests.Session.request()
(see that documentation for an explanation of these keyword arguments).
- Raises
AuthenticationError – If the response status code is 401
HTTPError – For all other response status codes at or above 400
- radiant_mlhub.session.get_session(*, api_key: Optional[str] = None, profile: Optional[str] = None) radiant_mlhub.session.Session [source]
Gets a
Session
object that uses the givenapi_key
for all requests. If noapi_key
argument is provided then the function will try to resolve an API key by finding the following values (in order of preference):An
MLHUB_API_KEY
environment variableA
api_key
value found in the givenprofile
section of~/.mlhub/profiles
A
api_key
value found in the givendefault
section of~/.mlhub/profiles
- Parameters
api_key (str, optional) – The API key to use for all requests from the session. See description above for how the API key is resolved if not provided as an argument.
profile (str, optional) – The name of a profile configured in the
.mlhub/profiles
file. This will be passed directly tofrom_config()
.
- Returns
session
- Return type
- Raises
APIKeyNotFound – If no API key can be resolved.
Examples
>>> from radiant_mlhub import get_session # Get the API from the "default" profile >>> session = get_session() # Get the session from the "project1" profile # Alternatively, you could set the MLHUB_PROFILE environment variable to "project1" >>> session = get_session(profile='project1') # Pass an API key directly to the session # Alternatively, you could set the MLHUB_API_KEY environment variable to "some-api-key" >>> session = get_session(api_key='some-api-key')
Module contents
- class radiant_mlhub.Collection(id: str, description: str, extent: pystac.collection.Extent, title: Optional[str] = None, stac_extensions: Optional[List[str]] = None, href: Optional[str] = None, extra_fields: Optional[Dict[str, Any]] = None, catalog_type: Optional[pystac.catalog.CatalogType] = None, license: str = 'proprietary', keywords: Optional[List[str]] = None, providers: Optional[List[pystac.provider.Provider]] = None, summaries: Optional[pystac.summaries.Summaries] = None, *, api_key: Optional[str] = None, profile: Optional[str] = None)[source]
Bases:
pystac.collection.Collection
Class inheriting from
pystac.Collection
that adds some convenience methods for listing and fetching from the Radiant MLHub API.- property archive_size: Optional[int]
The size of the tarball archive for this collection in bytes (or
None
if the archive does not exist).
- download(output_dir: Union[str, pathlib.Path], *, if_exists: str = 'resume', api_key: Optional[str] = None, profile: Optional[str] = None) pathlib.Path [source]
Downloads the archive for this collection to an output location (current working directory by default). If the parent directories for
output_path
do not exist, they will be created.The
if_exists
argument determines how to handle an existing archive file in the output directory. See the documentation for thedownload_archive()
function for details. The default behavior is to resume downloading if the existing file is incomplete and skip the download if it is complete.Note
Some collections may be very large and take a significant amount of time to download, depending on your connection speed.
- Parameters
output_dir (Path) – Path to a local directory to which the file will be downloaded. File name will be generated automatically based on the download URL.
if_exists (str, optional) – How to handle an existing archive at the same location. If
"skip"
, the download will be skipped. If"overwrite"
, the existing file will be overwritten and the entire file will be re-downloaded. If"resume"
(the default), the existing file size will be compared to the size of the download (using theContent-Length
header). If the existing file is smaller, then only the remaining portion will be downloaded. Otherwise, the download will be skipped.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Returns
output_path – The path to the downloaded archive file.
- Return type
- Raises
FileExistsError – If file at
output_path
already exists and bothexist_okay
andoverwrite
areFalse
.
- classmethod fetch(collection_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Collection [source]
Creates a
Collection
instance by fetching the collection with the given ID from the Radiant MLHub API.- Parameters
- Returns
collection
- Return type
- fetch_item(item_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) pystac.item.Item [source]
- classmethod from_dict(d: Dict[str, Any], href: Optional[str] = None, root: Optional[pystac.catalog.Catalog] = None, migrate: bool = False, preserve_dict: bool = True, *, api_key: Optional[str] = None, profile: Optional[str] = None) Collection [source]
Patches the
pystac.Collection.from_dict()
method so that it returns the calling class instead of always returning apystac.Collection
instance.
- get_items(*, api_key: Optional[str] = None, profile: Optional[str] = None) Iterator[pystac.item.Item] [source]
Note
The
get_items
method is not implemented for Radiant MLHubCollection
instances for performance reasons. Please use theCollection.download()
method to download Collection assets.- Raises
- classmethod list(*, api_key: Optional[str] = None, profile: Optional[str] = None) List[Collection] [source]
Returns a list of
Collection
instances for all collections hosted by MLHub.See the Authentication documentation for details on how authentication is handled for this request.
- Parameters
- Returns
collections
- Return type
List[Collection]
- class radiant_mlhub.Dataset(id: str, collections: List[Dict[str, Any]], title: Optional[str] = None, registry: Optional[str] = None, doi: Optional[str] = None, citation: Optional[str] = None, *, api_key: Optional[str] = None, profile: Optional[str] = None, **_: Any)[source]
Bases:
object
Class that brings together multiple Radiant MLHub “collections” that are all considered part of a single “dataset”. For instance, the
bigearthnet_v1
dataset is composed of both a source imagery collection (bigearthnet_v1_source
) and a labels collection (bigearthnet_v1_labels
).- registry_url
The URL to the registry page for this dataset, or
None
if no registry page exists.- Type
str or None
- doi
The DOI identifier for this dataset, or
None
if there is no DOI for this dataset.- Type
str or None
- citation
The citation information for this dataset, or
None
if there is no citation information.- Type
str or None
- property collections: radiant_mlhub.models.dataset._CollectionList
List of collections associated with this dataset. The list that is returned has 2 additional attributes (
source_imagery
andlabels
) that represent the list of collections corresponding the each type.Note
This is a cached property, so updating
self.collection_descriptions
after callingself.collections
the first time will have no effect on the results. Seefunctools.cached_property()
for details on clearing the cached value.Examples
>>> from radiant_mlhub import Dataset >>> dataset = Dataset.fetch('bigearthnet_v1') >>> len(dataset.collections) 2 >>> len(dataset.collections.source_imagery) 1 >>> len(dataset.collections.labels) 1
To loop through all collections
>>> for collection in dataset.collections: ... # Do something here
To loop through only the source imagery collections:
>>> for collection in dataset.collections.source_imagery: ... # Do something here
To loop through only the label collections:
>>> for collection in dataset.collections.labels: ... # Do something here
- download(output_dir: Union[pathlib.Path, str], *, if_exists: str = 'resume', api_key: Optional[str] = None, profile: Optional[str] = None) List[pathlib.Path] [source]
Downloads archives for all collections associated with this dataset to given directory. Each archive will be named using the collection ID (e.g. some_collection.tar.gz). If
output_dir
does not exist, it will be created.Note
Some collections may be very large and take a significant amount of time to download, depending on your connection speed.
- Parameters
output_dir (str or pathlib.Path) – The directory into which the archives will be written.
if_exists (str, optional) – How to handle an existing archive at the same location. If
"skip"
, the download will be skipped. If"overwrite"
, the existing file will be overwritten and the entire file will be re-downloaded. If"resume"
(the default), the existing file size will be compared to the size of the download (using theContent-Length
header). If the existing file is smaller, then only the remaining portion will be downloaded. Otherwise, the download will be skipped.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Returns
output_paths – List of paths to the downloaded archives
- Return type
List[pathlib.Path]
- Raises
IOError – If
output_dir
exists and is not a directory.FileExistsError – If one of the archive files already exists in the
output_dir
and bothexist_okay
andoverwrite
areFalse
.
- classmethod fetch(dataset_id_or_doi: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dataset [source]
Creates a
Dataset
instance by first trying to fetching the dataset based on ID, then falling back to fetching by DOI.- Parameters
- Returns
dataset
- Return type
- classmethod fetch_by_doi(dataset_doi: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dataset [source]
Creates a
Dataset
instance by fetching the dataset with the given DOI from the Radiant MLHub API.- Parameters
- Returns
dataset
- Return type
- classmethod fetch_by_id(dataset_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) Dataset [source]
Creates a
Dataset
instance by fetching the dataset with the given ID from the Radiant MLHub API.- Parameters
- Returns
dataset
- Return type
- classmethod list(*, tags: Optional[Union[str, Iterable[str]]] = None, text: Optional[Union[str, Iterable[str]]] = None, api_key: Optional[str] = None, profile: Optional[str] = None) List[Dataset] [source]
Returns a list of
Dataset
instances for each datasets hosted by MLHub.See the Authentication documentation for details on how authentication is handled for this request.
- Parameters
tags (A list of tags to filter datasets by. If not
None
, only datasets containing all) – provided tags will be returned.text (A list of text phrases to filter datasets by. If not
None
, only datasets) – containing all phrases will be returned.api_key (str) – An API key to use for this request. This will override an API key set in a profile on using an environment variable
profile (str) – A profile to use when making this request.
- Yields
dataset (Dataset)
- class radiant_mlhub.MLModel(id: str, geometry: Optional[Dict[str, Any]], bbox: Optional[List[float]], datetime: Optional[datetime.datetime], properties: Dict[str, Any], stac_extensions: Optional[List[str]] = None, href: Optional[str] = None, collection: Optional[Union[str, pystac.collection.Collection]] = None, extra_fields: Optional[Dict[str, Any]] = None, *, api_key: Optional[str] = None, profile: Optional[str] = None)[source]
Bases:
pystac.item.Item
- classmethod fetch(model_id: str, *, api_key: Optional[str] = None, profile: Optional[str] = None) radiant_mlhub.models.ml_model.MLModel [source]
Fetches a
MLModel
instance by id.- Parameters
- Returns
model
- Return type
- classmethod from_dict(d: Dict[str, Any], href: Optional[str] = None, root: Optional[pystac.catalog.Catalog] = None, migrate: bool = False, preserve_dict: bool = True, *, api_key: Optional[str] = None, profile: Optional[str] = None) radiant_mlhub.models.ml_model.MLModel [source]
Patches the
pystac.Item.from_dict()
method so that it returns the calling class instead of always returning apystac.Item
instance.
- classmethod list(*, api_key: Optional[str] = None, profile: Optional[str] = None) List[radiant_mlhub.models.ml_model.MLModel] [source]
Returns a list of
MLModel
instances for all models hosted by MLHub.See the Authentication documentation for details on how authentication is handled for this request.
- session_kwargs: Dict[str, Any] = {}
Class inheriting from
pystac.Item
that adds some convenience methods for listing and fetching from the Radiant MLHub API.
- radiant_mlhub.get_session(*, api_key: Optional[str] = None, profile: Optional[str] = None) radiant_mlhub.session.Session [source]
Gets a
Session
object that uses the givenapi_key
for all requests. If noapi_key
argument is provided then the function will try to resolve an API key by finding the following values (in order of preference):An
MLHUB_API_KEY
environment variableA
api_key
value found in the givenprofile
section of~/.mlhub/profiles
A
api_key
value found in the givendefault
section of~/.mlhub/profiles
- Parameters
api_key (str, optional) – The API key to use for all requests from the session. See description above for how the API key is resolved if not provided as an argument.
profile (str, optional) – The name of a profile configured in the
.mlhub/profiles
file. This will be passed directly tofrom_config()
.
- Returns
session
- Return type
- Raises
APIKeyNotFound – If no API key can be resolved.
Examples
>>> from radiant_mlhub import get_session # Get the API from the "default" profile >>> session = get_session() # Get the session from the "project1" profile # Alternatively, you could set the MLHUB_PROFILE environment variable to "project1" >>> session = get_session(profile='project1') # Pass an API key directly to the session # Alternatively, you could set the MLHUB_API_KEY environment variable to "some-api-key" >>> session = get_session(api_key='some-api-key')
CLI Tools
mlhub
CLI tool for the radiant_mlhub Python client.
mlhub [OPTIONS] COMMAND [ARGS]...
Options
- --version
Show the version and exit.
configure
Interactively set up radiant_mlhub configuration file.
This tool walks you through setting up a ~/.mlhub/profiles file and adding an API key. If you do not provide a –profile option, it will update the “default” profile. If you do not provide an –api-key option, you will be prompted to enter an API key by the tool.
If you need to change the location of the profiles file, set the MLHUB_HOME environment variable before running this command.
For details on profiles and authentication for the radiant_mlhub client, please see the official Authentication documentation:
mlhub configure [OPTIONS]
Options
- --profile <profile>
The name of the profile to configure.
- --api-key <api_key>
The API key to use for this profile.